Optimising suckler herd fertility for Better Returns
While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

The text of this document (this excludes, where present, any logos) may be reproduced free of charge in any format or medium providing that it is reproduced accurately and not in a misleading context. The material must be acknowledged as Agriculture and Horticulture Development Board copyright and the document title specified. Where third party material has been identified, permission from the respective copyright holder must be sought.

This publication is available from our website at beefandlamb.ahdb.org.uk

Any enquiries related to this publication should be sent to us at AHDB Beef & Lamb, Stoneleigh Park, Kenilworth, Warwickshire CV8 2TL.

For more information contact:
Better Returns Programme
AHDB Beef & Lamb
Stoneleigh Park
Kenilworth
Warwickshire CV8 2TL

Tel: 024 7647 8834
Email: brp@ahdb.org.uk
beefandlamb.ahdb.org.uk

AHDB Beef & Lamb is a part of the Agriculture and Horticulture Development Board (AHDB).
Contents

4 How fertility affects profitability
5 Managing fertility by recording
6 Maintaining a compact calving period
8 Body Condition Score (BCS)
10 Feeding to improve fertility
11 Breeding to improve fertility
12 Difficult calvings
13 Bull fertility
14 Health issues
15 Avoid buying in disease
16 Managing replacement heifers
17 Breeding options
18 The suckler cow production calendar

Optimising fertility is critical to the success of any suckler herd. Nutrition, health and genetics all play a part.

Figures show that spring-calving herds in England produced 88 calves per 100 cows or heifers put to the bull in 2016. Compared to a target of 94, this shows there is room for improvement.

Maintaining a compact calving period and taking steps to cull unproductive cows is key. Tools such as recording and benchmarking performance, pregnancy diagnosis and body condition scoring (BCS) can help producers increase cow output.

This manual explains how these tools can be used. For example, it outlines the BCS targets for each stage of the production cycle of autumn and spring-calved cows. It also shows how appropriate feeding, breeding and health management can help.

It looks at the particular requirements of heifers and the bull – for no matter how fertile the cow is, if he is not in good working order, she will never get in calf.

Dr Mary Vickers
Senior Livestock Scientist
AHDB Beef & Lamb
How fertility affects profitability

The annual stocktake figures for 2016 suggest that there is room for improvement to reach the target of 94 calves born per 100 cows or heifers put to the bull. Increasing the fertility of a suckler herd will result in:

- Increased number/weight of calves weaned
- Reduced length of calving period
- Reduced calving interval leading to more calves produced per year
- Heavier and more fertile heifers at mating.

In a 100-cow herd, increasing the number of calves reared per 100 cows put to the bull by just 2% could increase calf sales by £1,000–£1,200 per year. Increasing weaning weights by 10kg for every calf would increase output by almost £2,000.

Relatively small improvements can make a significant difference to the bottom line. Reducing calving spread is an effective way of increasing herd output and has many other management advantages.

**TOP TIP**

Calculate how many calves are born in each three-week period from the start of calving, to see how quickly cows conceive relative to each three-week oestrus cycle. Where date of bull joining the group is known, calculate start of calving as that date plus the gestation length for the breed eg 285 days, and add in any earlier born calves to the first three weeks. This avoids any abnormally early born calves affecting the figures.
Recording performance at herd level and for individual cows and calves is essential for managing fertility. It reveals the most fertile animals that are profitable to keep and those that should be culled. It is a very worthwhile investment in time and effort.

Achieving reproductive targets underpins suckler herd profitability. Below are some of the main industry targets for suckler herds.

A more detailed list can be found in the Key Performance Indicator (KPI) Calculator, available to download at beefandlamb.ahdb.org.uk

Improving fertility requires a planned approach. Where replacements are managed to calve early in the season and late calving cows are culled, real improvements can be made year-on-year.

Keeping good records will make it easier to identify where problems are arising and to investigate the cause.

### Table 1. Comparing performance against standard targets

<table>
<thead>
<tr>
<th></th>
<th>Industry target</th>
<th>Your performance this year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calves born per 100 cows/heifers put to the bull</td>
<td>&gt;95%</td>
<td></td>
</tr>
<tr>
<td>Calves weaned per 100 cows/heifers put to the bull</td>
<td>&gt;94%</td>
<td></td>
</tr>
<tr>
<td>Cows calving within first three week period</td>
<td>&gt;65%</td>
<td></td>
</tr>
<tr>
<td>Mature cows with assisted calvings</td>
<td>&lt;5%</td>
<td></td>
</tr>
<tr>
<td>Age at first calving</td>
<td>24 months</td>
<td></td>
</tr>
<tr>
<td>Calving period</td>
<td>&lt;12 weeks</td>
<td></td>
</tr>
<tr>
<td>Empty cows</td>
<td>&lt;5%</td>
<td></td>
</tr>
<tr>
<td>Calf mortality – during pregnancy</td>
<td>&lt;2%</td>
<td></td>
</tr>
<tr>
<td>Calf mortality – birth to weaning</td>
<td>&lt;3%</td>
<td></td>
</tr>
</tbody>
</table>
Maintaining a compact calving period

Improving herd fertility not only means producing more calves each year, but also getting cows in calf quickly resulting in a tighter calving period.

Achieving a tight calving season requires discipline in terms of the period of time the bull runs with the herd.

- Bulls in with cows for nine weeks
- Bulls in with heifers for six weeks.

Only those heifers that become pregnant in a short six-week breeding season should be kept for breeding, allowing the others to be finished or sold. This means only the most fertile heifers join the herd.

Benefits:
- Simpler management of cows and calves
- An even batch of calves
- Increased weaning weights
- Less labour requirement at calving
- Fewer calf health problems
- Poor performing cows cannot hide
- Reduced production costs
- Greater financial returns.

Options for shortening the calving period:
- Take the bull out after nine weeks with the cows; earlier with the heifers
- Cull 5–10% of cows calving outside the target calving period each year
- Sell in calf cows or those with calves at foot that fall outside the target calving period and retain/purchase more heifers
- When there is more than one calving period, bring in replacements for one period only and allow the other calving season to gradually disappear
- Ensure heifers joining the herd will calve early in the calving season.

Choosing a calving period

Given the high feed requirement of lactating cows and youngstock, it makes sense to choose a calving period when good quality cheap feed is available. Often this means matching calving date to grass growth, while also considering availability of labour and facilities.

Spring calving allows cows to mobilise excess body condition during the expensive winter feeding period, when they are dry. However, excessive weight loss should be avoided, as this can delay the return to oestrus after calving and reduce colostrum quality.

Beware of the empty cow!

In herds with more than one calving season, or where calving is all-year-round, it is easy for an infertile cow to slip from one calving season to another, extending her calving interval beyond the desired 365 days. Keeping these less fertile cows is not cost effective and they should be sold or culled.

TOP TIP

Examine calving records or British Cattle Movement Service (BCMS) herd data to identify cows with extended calving intervals.
**Identify where problems are happening**

Reasons for poor fertility include both bull and cow related factors such as:

- Heifer and cow nutrition and BCS
- Difficult calvings
- Herd health status
- Management of replacement heifers
- Bull selection, soundness and fertility.

In herds where artificial insemination (AI) is used, heat detection and AI technique and timing can be added to this list.

If the number of cows and heifers producing a live calf is a concern, categorise those females that fail to do so according to:

- Empty – not in calf at end of breeding season
- Aborted – conceived but did not hold
- Died
- Culled
- Sold.

Identify the reasons why problems might have occurred and plan with the vet to avoid them in future.

**Pregnancy diagnosis (PD)**

It is vital that any cows not in calf at the end of the mating period are identified promptly. Options for PD are shown in Table 2.

**Table 2. Pros and cons of different pregnancy diagnosis**

<table>
<thead>
<tr>
<th>Method</th>
<th>Who</th>
<th>Timing</th>
<th>Pros and cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual palpation</td>
<td>Vet</td>
<td>From eight weeks (more success if done after five months)</td>
<td>No need for electric supply. Not good for accurate or early calving date prediction</td>
</tr>
<tr>
<td>Ultrasound scanning</td>
<td>Vet/technician</td>
<td>From six weeks</td>
<td>Most scanners are battery powered. More accurate calving date prediction, which is useful for identifying problems</td>
</tr>
</tbody>
</table>

Observing heats is a useful management aid, but is an unreliable indicator of pregnancy.

**Culling**

Culling is a valuable tool to improve the herd’s performance by removing cows that are not performing well and are costing rather than earning the business money.

Deciding which suckler cows to cull each year should be based on four key considerations:

- Is the cow in calf and predicted to calve inside the target calving period?
- Does her historical performance and that of her calves, justify her staying in the herd?
- Is her health status acceptable?
- Is she easy to work with?

**TOP TIP**

Analyse why breeding animals are culled from the herd to find where problems exist. For example, if there are many empty first calvers, was this due to difficult calvings, the consequence of a particular sire, or insufficient feeding post-calving?
Body Condition Score (BCS)

Body condition scoring is a practical tool for managing the nutrition and fertility of suckler cows and heifers. It is used to assess their nutritional status at different times during the year.

Body condition scoring involves feeling across the animal’s backbone and ribs for coverings of fat. In England a score of 1 (very thin) to 5 (obese) is most commonly used.

For most suckler cows one body condition score relates to around 13% of liveweight, so for a 650kg cow, 1 BCS would be 84kg.

### Table 3. BCS descriptors and implications

<table>
<thead>
<tr>
<th>BCS</th>
<th>Description</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very lean</td>
<td>Poor fertility or downer cow if pregnant, poor calf vigour</td>
</tr>
<tr>
<td>2</td>
<td>Commercial working range</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Very fat</td>
<td>Poor fertility, increased calving difficulty</td>
</tr>
<tr>
<td>5</td>
<td>Obese</td>
<td></td>
</tr>
</tbody>
</table>

Cow condition should be monitored throughout the year and assessed at key time points, including around calving, service, weaning or housing.

### Table 4. Target BCS for cows and heifers

<table>
<thead>
<tr>
<th></th>
<th>Spring calving herds</th>
<th>Autumn calving herds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calving</td>
<td>2.5–3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Service</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Housing/ weaning</td>
<td>3.0–3.5</td>
<td>2.5–3.0</td>
</tr>
</tbody>
</table>

It is recommended that younger cows and heifers calve at BCS 3 because they have an additional feed requirement for growth over maintenance and lactation.

It is advisable to group cows by BCS and feed accordingly. The ideal would be to have three groups:

- Fat cows (>BCS 3)
- Cows on target
- Thinner cows and first calvers that need additional feeding.
How to assess BCS

Cows should be handled on the loin area, ribs and the tail head to assess the level of subcutaneous fat.

When assessing BCS, handle cows on their left side, as seen from behind, because large amounts of kidney fat on the right hand side can be misleading.

- Grip the outer edges of the loin with the thumb curled under the ledge formed by the horizontal processes of the spine. The ball of the thumb is used to feel the thickness of fat over the bone
- The ribs are scored using the flat of the hand and fingertips to feel the amount of fat over them
- Feel fat deposits around the tail head and over the pelvic bone with the fingers.

Assessment should be carried out quietly and carefully using the same hand from cow to cow. An overall visual assessment is also important.

It is best if the same person does the BCS each time for consistency.

Impact on fertility

BCS at calving has a critical impact on subsequent fertility. Feeding and grazing management should revolve around achieving target BCS for calving, six to eight weeks before calving, then maintaining body condition during the final pre-calving period.

Table 5. Effect of BCS at calving on calving interval in suckler cows

<table>
<thead>
<tr>
<th>BCS at calving</th>
<th>Calving Interval (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–1.5</td>
<td>418</td>
</tr>
<tr>
<td>2.0</td>
<td>382</td>
</tr>
<tr>
<td>2.5–3.0</td>
<td>364</td>
</tr>
</tbody>
</table>

Source: Drennan and Berry (2006)
Feeding to improve fertility

The hormones associated with fertility and nutrition are closely linked. Under normal conditions dietary energy is the main factor limiting the reproductive performance of suckler cows.

Nutrition before calving will have a greater impact on time to first oestrus after calving, than nutrition after calving.

Spring-calving cows should calve at BCS 2.5–3 and then be fed on a rising plane of nutrition to mating. Autumn calvers should calve at BCS 3 and maintain this score through mating to six weeks beyond.

Cows have around 80 days in which to recover from calving and become pregnant again, if they are to maintain a 365-day calving interval. Nutrition from six weeks before calving through to six weeks after service is critical. This is because oocyte (egg) viability and embryo survival can be affected by excessive loss of body condition during this period.

Minimising negative energy balance in early lactation by providing high-quality feeds will also promote ovulation. The egg that will be fertilised to make the next calf will be produced whilst the cow is still pregnant with the first one.

Weaning the suckled calf

Time of weaning provides a useful means of manipulating BCS.

With spring calvers, be prepared to wean calves from six months of age if any cows are particularly thin to preserve body condition of the cow and avoid having to feed high levels of relatively expensive bought-in feeds during the winter.

In autumn calved herds, delaying weaning until 10 months of age can avoid cows putting on excess condition in mid to late pregnancy. Alternatively, calves can be weaned earlier and feed supplied to the cow controlled.

At weaning, check the condition of all cows and heifers and group according to BCS and feed as required. If space for separate groups is limited, keep heifers, first calvers and thin cows separately from the main herd, to ensure they continue to reach target liveweight and condition for the subsequent breeding season.

Essential micronutrients

Copper, selenium, iodine and vitamin E are essential for optimising suckler cow fertility. Ask the vet to take blood or biopsy samples from some cows to identify any deficiencies. It is important that a specific dry cow mineral is fed four to six weeks before calving.

Suckler cows, particularly those up to three months calved, are at risk of hypomagnesaemia (grass staggers) when grazing lush grass in cold, wet conditions. Supplementary magnesium can be provided and offering hay, straw or silage while at grass can also help.

For more information see Beef BRP Manual 5 Feeding suckler cows and calves for Better Returns at beefandlamb.ahdb.org.uk
Breeding fertile replacements is an important means of improving herd fertility and crucial for long-term profitability.

A bull or AI sire chosen to produce heifers should be used at the start of the breeding period. This means potential breeding females will be born early in the season and are likely to reach target weight for the start of the following breeding period. It also means they were born from the most fertile cows.

Estimated breeding values (EBVs) provide an assessment of an animal’s breeding potential for a specific trait. There is a range of EBVs for important traits related to breeding productive suckler cows.

**Table 6. Fertility EBVs**

<table>
<thead>
<tr>
<th>EBV</th>
<th>Impact of sire with superior EBVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at first calving</td>
<td>Heifers that are reproductively active and able to conceive at an early age</td>
</tr>
<tr>
<td>Scrotal circumference</td>
<td>Bulls’ daughters have better fertility and reach puberty earlier. Male progeny are also more fertile</td>
</tr>
<tr>
<td>Calving interval/days to calving</td>
<td>Females have a shorter interval between successive calvings</td>
</tr>
<tr>
<td>Longevity</td>
<td>Cows that have a long productive herd life, in part due to improved fertility</td>
</tr>
</tbody>
</table>

In terms of calving ease there are EBVs that relate to the ease with which a calf is likely to be born, as well as how easily a female will calve when she produces her own calves.

Breeding strategies to produce replacements must also take into account other traits including growth rate, milking ability and temperament.

Heifers must reach their target weight by first service and go on to produce calves that grow efficiently, so genetics for good growth are important. They must also have sufficient milk to enable fast rates of calf growth to weaning.

**Table 7. Calving ease EBVs**

<table>
<thead>
<tr>
<th>EBV</th>
<th>Impact of sires with superior EBVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calving ease maternal/daughters</td>
<td>Female progeny will require less assistance when they calve themselves as breeding females</td>
</tr>
<tr>
<td>Calving ease direct</td>
<td>Progeny will require less assistance when they are born</td>
</tr>
<tr>
<td>Birth weight</td>
<td>Calves will be smaller at birth and are likely to be born more easily</td>
</tr>
<tr>
<td>Gestation length</td>
<td>Calves are born sooner with fewer calving difficulties</td>
</tr>
</tbody>
</table>

**Table 8. Growth and milk EBVs**

<table>
<thead>
<tr>
<th>EBV</th>
<th>Impact of sires with superior EBVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-day growth EBV</td>
<td>Heavier calves at 200 days of age</td>
</tr>
<tr>
<td>200-day milk EBV</td>
<td>Females that produce more milk</td>
</tr>
</tbody>
</table>

Female sexed semen is available for suckler herds. This can be used as a tool to ensure that replacement females are bred from the most productive cows.
Difficult calvings

Calvings that require assistance greatly increase the risk of reproductive problems in the following breeding season and also reduce calf survival.

Table 9. The impact of assisting cows to calve in subsequent breeding season

<table>
<thead>
<tr>
<th>Calving history</th>
<th>Number of cows</th>
<th>Subsequent breeding season success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>No assistance</td>
<td>81</td>
<td>96%</td>
</tr>
<tr>
<td>Assisted by stockperson</td>
<td>9</td>
<td>25%</td>
</tr>
<tr>
<td>Assisted by vet</td>
<td>6</td>
<td>34%</td>
</tr>
<tr>
<td>Caesarean</td>
<td>4</td>
<td>75%</td>
</tr>
</tbody>
</table>

The main causes of calving difficulties are:

- Calves that are too big – due to excessive dam nutrition or poor sire choice
- Dam is poorly grown – caused by poor management
- Dam is overfat
- Abnormally small or abnormally shaped pelvis.

Breeding

EBVs can be used to select bulls that will reduce the incidence of calving problems. Choose sires with:

- Low birth weight EBVs
- Short gestation length EBVs
- Good EBVs for direct calving ease.

Calving the cow

Only intervene when a calving is not proceeding normally. Assisted and difficult calvings increase the risk of uterine infections, eg endometritis (whites) which can significantly delay the onset of cycling after calving.

Once calving begins, monitor progress. If nothing has happened after the cow has been straining for 30 minutes, check the calf is presented correctly.

Nutrition

Planned management of cow nutrition, with regular assessment of body condition can reduce problem calvings. Similarly, ensuring maiden heifers are well grown at service and then fed well enough to allow them and their calves to continue growing, will encourage easier calvings.

Do not feed excessively in late pregnancy, as this will increase the birth weight of the unborn calf, leading to calving difficulties without improving the body condition of the cow.

Equally, limiting feed to reduce calf birth weight during the last month of pregnancy can do more harm than good. It can reduce cow fertility and colostrum quality, cause problems for the calf and reduce the cow’s stamina at calving.

The best option is to adjust feed rates at weaning to gradually change body condition aiming for cows to be in the correct BCS six weeks before calving and then to maintain BCS to calving, whilst considering supplementation of young or thin cows.

After the water bag is first seen or has broken, heifers can be left for up to two hours and cows for one hour. If there is a problem, decide if it can be handled without veterinary assistance. But do not wait too long to call the vet as dead calves are costly.

Always wear full-length gloves and use a lot of lubrication to assist the smooth passage of a live calf.

Disinfect any calving equipment between each calving. Replace bedding before each cow calves.

For more details on successful calvings read the BRP+ Minimising calving difficulties at beefandlamb.ahdb.org.uk
Bull fertility

Bull fertility is important for maintaining a compact calving period, maximising the value of the calf crop and overall herd profitability.

Whilst few bulls are infertile, ie not capable of getting a cow in calf, many are sub-fertile and will produce fewer calves than a fully fertile bull.

A breeding soundness examination, performed by the vet, is a sound investment before the start of the breeding season, to test semen quality and physical attributes.

Ensuring the bulls in the herd are ready for work requires forward planning, as semen production takes 60 days. The bull must be in good health at least 10 weeks before the breeding season begins.

Preparation for work

• Ask the vet to test the breeding soundness of the bulls 10 weeks before he is required to start mating. This will involve an examination of his penis and testicles and testing his semen quality

• Check the bull’s body condition – ideally BCS 3

• Quarantine new bulls for four weeks after purchase for health screening and ration acclimatisation

• Avoid sudden ration changes and do not over-feed, as this can reduce fertility and lead to feet problems

• Check feet and legs well in advance of serving time, as good locomotion is essential for successfully serving cows. Bad cases of lameness can affect semen quality and reduce fertility for weeks after treatment

• Provide exercise where possible, eg site feed and water at opposite ends of the field.

Whilst at work

• Watch the bull working to check he is serving cows effectively

• PD the cows and heifers early, so that an infertile or sub-fertile bull can be identified. Even bulls that have passed a breeding soundness examination can go lame or suffer reduced fertility during the breeding season

• Record when you see a cow being mated and watch for signs of cows coming on heat repeatedly

• Do not over-work a young bull.
Health issues

Most health problems affect fertility, some more severely than others.

One of the most common ways of introducing health problems is buying or bringing in infected cattle. Knowing the health status of new animals is important, as is keeping them separate from other cattle until a suitable quarantine period has passed and monitoring and testing have confirmed they are healthy.

Bovine Viral Diarrhoea (BVD) and Johne’s disease should be actively managed in all suckler herds.

BVD is an endemic disease, which can reduce fertility and cause abortions and stillbirths. When cows become infected with the virus during pregnancy, the foetus is either lost or becomes persistently infected (PI). Affected calves shed BVD virus throughout their lives, infecting the rest of the herd. If a PI cow calves successfully she will always produce a PI calf.

The cost of BVD is estimated to be between £13 and £31 per affected cow per year, but can be much higher during a breakdown. Effective tests exist to identify PIs and vaccines to protect the herd.

A national scheme now exists to support farmers to eradicate BVD in England – see more at bvdfree.org.uk

Johne’s disease is a progressive chronic wasting disease that can also cause substantial losses to suckler herds. While it does not cause abortions, infected cows suffer weight loss and are hard to get back in calf.

Infected animals often do not show any obvious signs of ill health until they are two to five years old. This long incubation period and poor sensitivity of tests can make diagnosis difficult.

Johne’s disease is difficult to control, but testing to know the herd status and removing infected cows is a good start. Combine this with purchasing breeding stock of known health status from accredited herds. Keep calving areas very clean to minimise transmission to calves via faeces from infected cows.

TOP TIPS

- Practise effective biosecurity such as isolating incoming stock whilst health testing is done, as this will minimise the risk of introducing disease
- Purchase cattle of known high health status from accredited herds
- Maintain good boundary fences to avoid contact with neighbouring livestock
- Implement an active herd health plan and review annually with the vet
- Vaccinate the herd appropriately to protect health status
- Provide a clean environment using effective disinfectants to clean buildings and keep calving areas clean, well bedded and mucked out regularly
- Keep feeding areas and equipment clean.
Avoid buying in disease

The purchase of infected animals is the most common way that disease arrives in the herd. A risk table for common diseases and replacement strategies is shown in Table 10.

Table 10. Level of disease risk from different replacement strategies

<table>
<thead>
<tr>
<th>Common replacement policy</th>
<th>BVD</th>
<th>Campylobacter</th>
<th>Infectious Bovine Rhinotracheitis</th>
<th>Johne’s disease</th>
<th>Leptospirosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase virgin bulling heifers from accredited herds</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Purchase virgin bulling heifers from herds of unknown status</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate to high</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Purchase in calf heifers from herds of unknown status</td>
<td>Moderate to high</td>
<td>Moderate to high</td>
<td>Moderate to high</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Purchase of cows with calves at foot</td>
<td>Moderate to high</td>
<td>Moderate to high</td>
<td>Moderate to high</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Purchase young bulls that have not mated from accredited herds</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Purchase, hire or share bulls that have been used in other herds</td>
<td>Moderate</td>
<td>High</td>
<td>Moderate to high</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Adapted from QMS – A Guide to Improving Suckler Herd Fertility

Sourcing breeding cattle from herds of accredited herd health status minimises the risk of buying in disease. Individual animals can be screened immediately before purchase or when in isolation after purchase.

For more information see the BRP Beef Diseases Directory available at beefandlamb.ahdb.org.uk
Managing replacement heifers

Heifers that calve for the first time at two years old will wean more calves than heifers that calve for the first time at three years old. If managed well, calving at two years can improve herd productivity significantly. It allows fewer groups of stock to be kept and at least 10% more productive cows in the herd, than when calving heifers at three years old.

Calving at two years also reduces the time between generations, leading to a faster rate of genetic improvement in the herd.

Successful calving at two years relies on meeting liveweight targets as the heifers grow to maturity.

Choosing replacement heifers

When selecting heifer replacements, the earliest born are most likely to reach puberty and get in calf at an early age. So aim to select heifers born in the first six weeks of the calving period that have grown well. Check that heifers are physically sound and that they are easy to handle.

Pre-breeding checks

As well as considering the weight and age of heifers pre-service, it can be useful to ask the vet to do some simple checks:

- To check that heifers are cycling before service
- To measure the pelvic area to reduce risk of calving difficulties. This enables heifers with an abnormally small or an abnormally shaped pelvis to be removed from the herd.

For more details see Beef BRP Manual 11 Managing replacement heifers for Better Returns at beefandlamb.ahdb.org.uk

Table 11. Example growth rates and liveweight targets for replacement heifers aiming to calve at 24 months of age

<table>
<thead>
<tr>
<th>Mature cow weight</th>
<th>Growth rate from birth to first service (kg/day)</th>
<th>First service (15 months of age)</th>
<th>Start of second breeding season</th>
<th>Start of third breeding season</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of mature weight</td>
<td></td>
<td>65</td>
<td>85</td>
<td>95</td>
</tr>
<tr>
<td>650kg</td>
<td>0.85</td>
<td>423</td>
<td>553</td>
<td>618</td>
</tr>
<tr>
<td>700kg</td>
<td>0.90</td>
<td>455</td>
<td>595</td>
<td>665</td>
</tr>
</tbody>
</table>

TOP TIPS

- Heifers should be managed to reach puberty at around 12 months of age. This allows them to start cycling before they are introduced to the bull
- Heifers should be mated over a shorter period than the main herd so they can calve early in the calving season. This allows them more time to recover from calving and get back in calf
- Breed to an easy-calving bull or AI sire to minimise calving difficulties.

The outcome from this should be a long-lived animal that is a productive member of the herd.
Breeding options

Artificial insemination is now commonly used in dairy and pedigree beef herds, enabling producers to hand pick bulls according to their EBVs. For a relatively small cost, producers can purchase semen from high genetic merit sires, speeding up genetic progress in their herd and increasing the value of calves. It also avoids the need to have both terminal and maternal stock bulls for herds breeding their own replacements.

Synchronisation is a means of encouraging a batch of females to come bulling together so they can all be served at the same time. It is commonly used for females being AI’d, as it enables AI to be carried out at a fixed time without the need for observing heats. It can also be useful for tightening calving periods.

Table 12 outlines some of the advantages and disadvantages of AI and synchronisation. In both cases attention to detail is critical to achieve success.

For more information see the BRP+ AI and oestrus synchronisation of beef cattle at beefandlamb.ahdb.org.uk

<table>
<thead>
<tr>
<th>Artificial Insemination</th>
<th>Disadvantages</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to top quality, high accuracy genetics without large investment in a bull</td>
<td>Heat detection required unless cows are synchronised. Without synchronisation, requires time spent observing natural heats, ideally 20 minutes three times daily</td>
<td>Conception depends on numerous factors including a competent technician and is typically 50–60%</td>
</tr>
<tr>
<td>Avoids year round cost of keeping a bull and the need for a maternal bull as well as a terminal bull, if breeding replacements</td>
<td>Conception depends on numerous factors including a competent technician and is typically 50–60%</td>
<td>Wide choice of bulls</td>
</tr>
<tr>
<td>Wide choice of bulls</td>
<td>Additional labour and handling facilities are required</td>
<td>Reliable semen quality</td>
</tr>
<tr>
<td>Bulls can be selected that are specifically suitable for heifers, eg easy calving traits</td>
<td>Cow/heifer temperament is important</td>
<td>Avoids disease threats of buying in stock from outside the herd</td>
</tr>
<tr>
<td>Sexed semen available for breeding replacement heifers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synchronisation</th>
<th>Disadvantages</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimises labour requirement at AI and calving</td>
<td>Additional upfront cost</td>
<td>Avoids need for heat detection if using fixed time insemination</td>
</tr>
<tr>
<td>Avoids need for heat detection if using fixed time insemination</td>
<td>Need to handle stock several times</td>
<td>Facilitates AI, giving access to high genetic merit sires</td>
</tr>
<tr>
<td>Facilitates AI, giving access to high genetic merit sires</td>
<td>Can require 20% more heifers to be mated if only given two opportunities to conceive to AI</td>
<td>Can be used to tighten calving blocks</td>
</tr>
<tr>
<td>Can be used to tighten calving blocks</td>
<td>Allows calves to be born earlier in the season so improving weights at weaning</td>
<td>Enhances reproductive performance of cattle by allowing cows to calve earlier in the season and having more recovery time before the start of the next service period</td>
</tr>
</tbody>
</table>
Spring calvers are usually weaned carrying excess body condition which they lose slowly up to six weeks before calving. BCS of autumn calvers needs to be controlled to avoid cows being too fat at calving.

<table>
<thead>
<tr>
<th>Season</th>
<th>BCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring calving</td>
<td>BCS 3–3.5</td>
</tr>
<tr>
<td>Autumn calving</td>
<td>BCS 2.5–3.0</td>
</tr>
</tbody>
</table>
The average gestation length for commonly used terminal sires is 280–290 days, leaving only 80 days for the uterus to recover after calving, and the cow to start cycling again and become pregnant. Achieving a 365-day calving interval depends on a cow being in good body condition and fit and healthy after calving.

Service period starts six weeks after calving. Cows need to be back in calf 12 weeks (80 days) after calving.

Thin cows will struggle to conceive. Aim to increase BCS from calving to six weeks after conception to encourage bulling activity, implantation of the embryo and reduce early losses.

Avoid any loss of BCS during mating and for six weeks after end of service period.
Beef BRP Manuals

Manual 1 – Choosing bulls to breed for Better Returns
Manual 2 – Marketing prime beef cattle for Better Returns
Manual 3 – Improving cattle handling for Better Returns
Manual 4 – Beef production from the dairy herd
Manual 5 – Feeding suckler cows and calves for Better Returns
Manual 6 – Improve beef housing for Better Returns
Manual 7 – Feeding growing and finishing cattle for Better Returns
Manual 8 – Optimising suckler herd fertility for Better Returns
Manual 9 – Controlling worms and liver fluke in cattle for Better Returns
Manual 10 – Better Returns from pure dairy-bred male calves
Manual 11 – Managing replacement heifers for Better Returns

See the AHDB Beef & Lamb website beefandlamb.ahdb.org.uk for the full list of Better Returns Programme publications for beef and lamb producers.